Charging for Diversifiable Risk and Proud to Do It:

Multiline Insurance Pricing with a Distortion Risk Measure

John A. Major, ASA, MAAA Director of Actuarial Research Guy Carpenter & Co, LLC Stephen Mildenhall, PhD, FCAS

Principal

Convex Risk LLC

CHARGING FOR DIVERSIFIABLE RISK AND PROUD TO DO IT: MULTILINE INSURANCE PRICING WITH A DISTORTION RISK MEASURE PART 1

CAS WEBINAR SERIES SEPTEMBER 24, 2020

John A. Major, ASA, MAAA Director of Actuarial Research

New York

What's it about?

Idiosyncratic (diversifiable) insurance risk is priced in the real world

A short discussion of why this might be

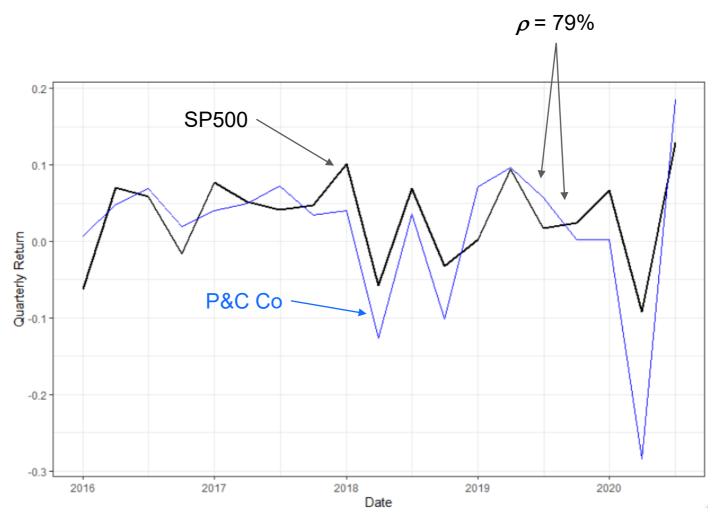
A long discussion of how to handle it "systematically"

Capital Asset Pricing Model

$$E[r] = r_f + \beta(r_m - r_f)$$

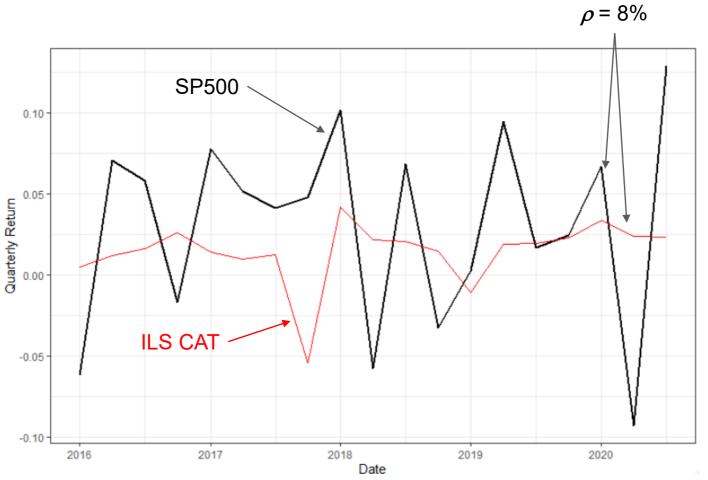
$$\beta = \frac{cov(r, r_m)}{\sigma^2(r_m)} \leftarrow Systematic risk$$

Systematic risk



- Systematic risk = correlated with financial markets
- Earns risk premium beyond expected value

Idiosyncratic risk



• Diversifiable, therefore should not earn a risk premium

But it does!

- Long term average returns
 - Specialty insurers: 7-9%
 - Reinsurers: 9%
 - ILS: 7.5%
- Total cost of capital breakdown:
 - Risk cost ~ 7%
 Diversifiable, should be zero
 - Frictional cost ~ 2%

Why?

- Violation of "perfect market" assumptions
 - Instantaneous, liquid trading
 - Long and short positions
 - Symmetric information
 - Complete market
 - No transaction costs

Negative reasons

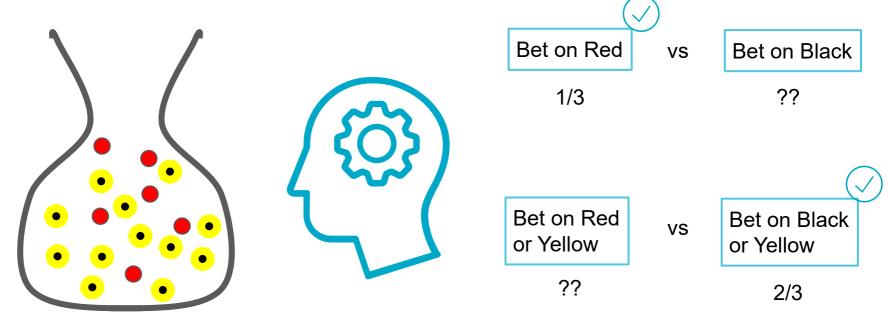
Any positive reasons?

Winner's Curse

- K competitors have independent, unbiased estimates of loss cost
 - The one with the lowest estimate wins the business
- Probability that the winning estimate is too low: $1 (1/2)^K \to 1$
 - "Common value auction"
 - Extensive theory
 - Solution: bid higher than your estimate

Ambiguity Aversion

- When data is thin or nonexistent, relying on expert judgment, etc.
 - Don't know the exact probabilities
- Ellsberg Paradox: Win \$100 if...



30 red 60 black OR yellow Inconsistent with utility theory Solution: assume the worst

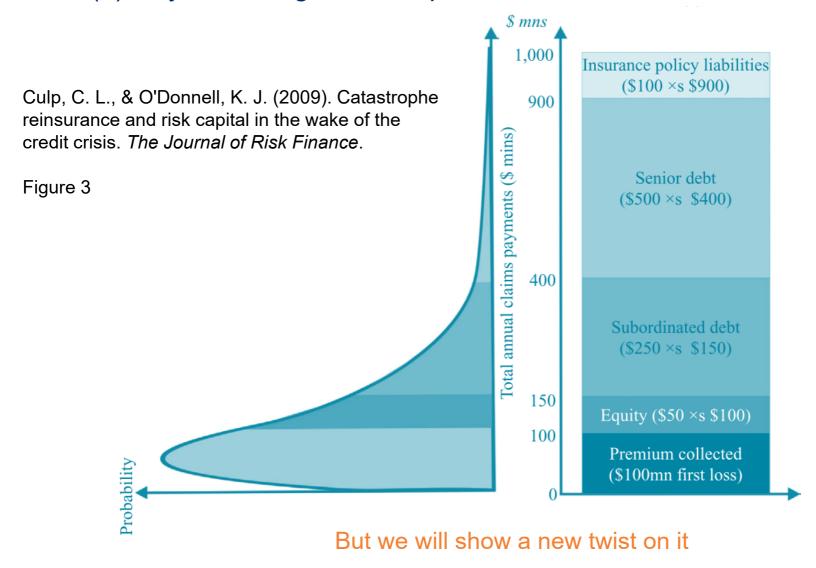
10

Bottom line

- P&C risk mostly idiosyncratic (diversifiable)
 - reasons to add a risk load.

- Do it right
 - Price whole portfolio
 - Allocate in a logical, consistent manner

A new (?) way of looking at risk capital



How we usually think about operations: (1) funding

Investors

Equity

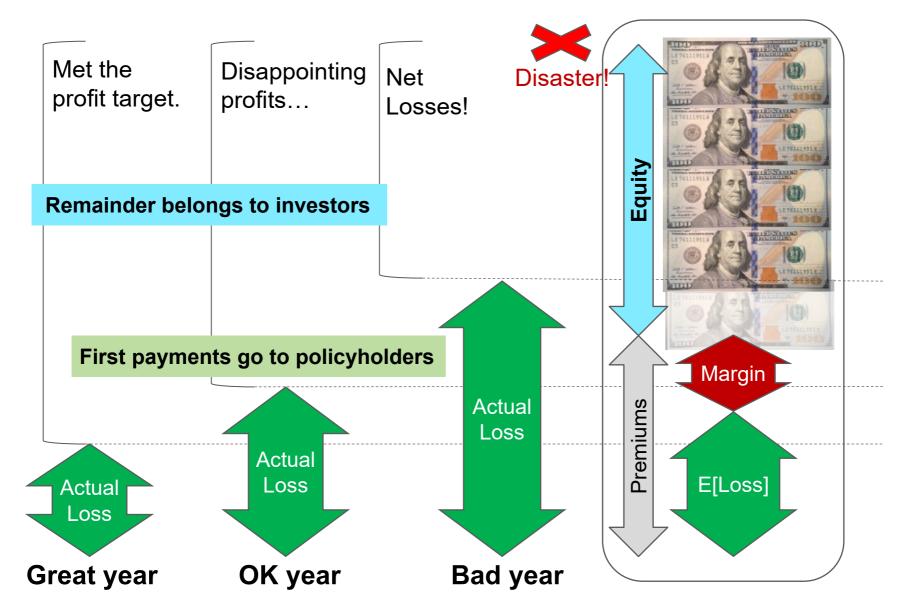
Buying residual value (providing the safety)

Policyholders

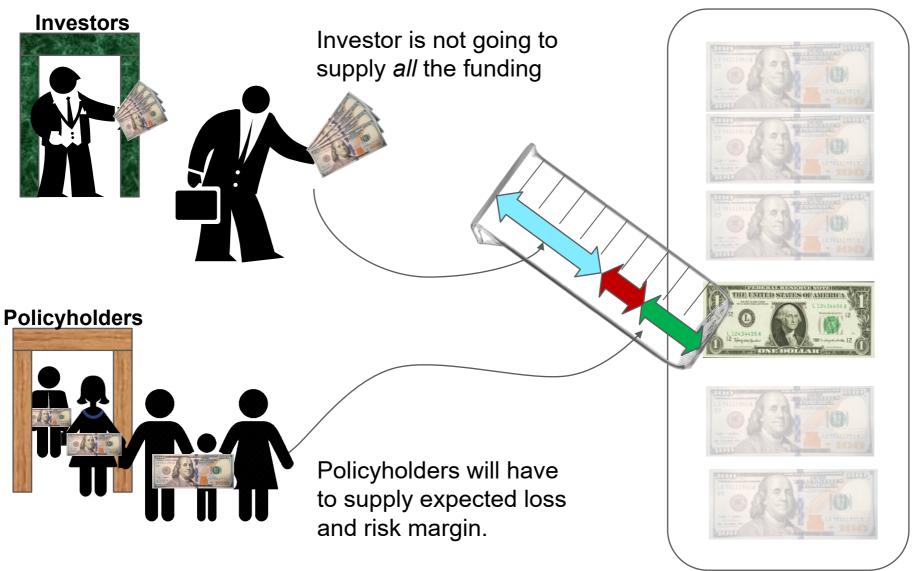
Premiums

Buying cover (at a safety level)

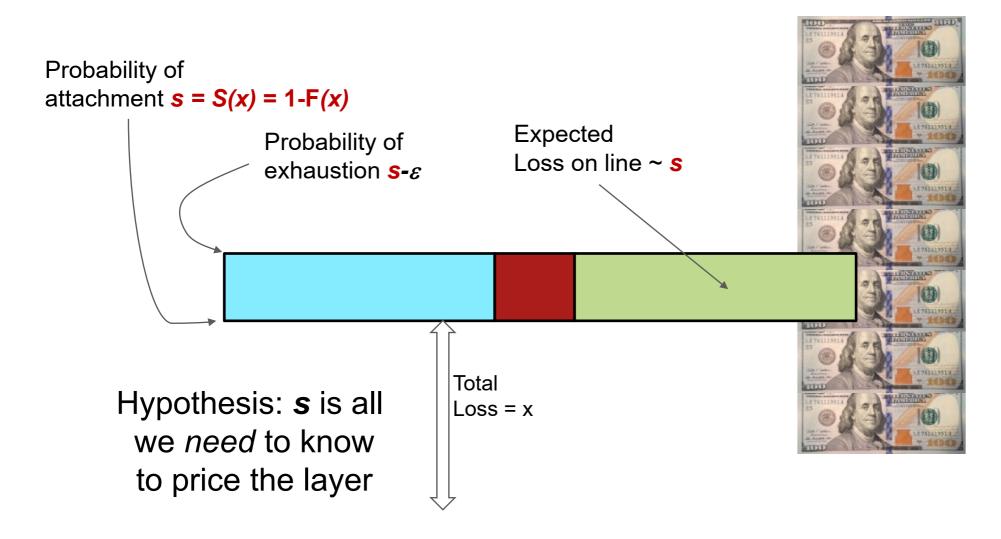
How we usually think about operations: (2) claim payment



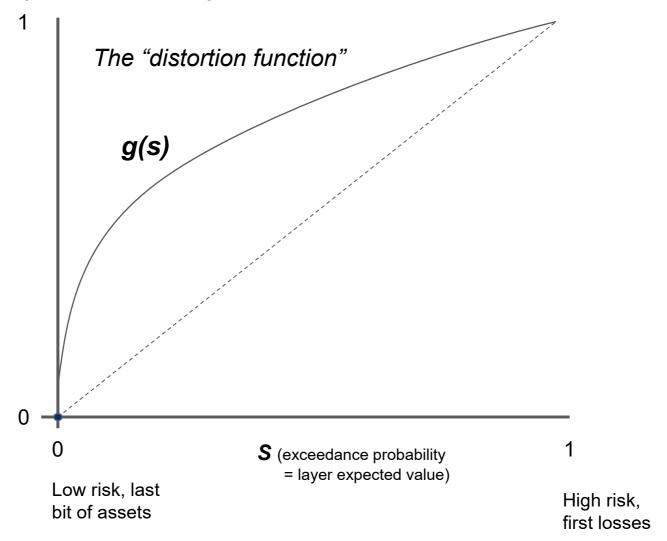
What if you had to fund each asset unit (layer) individually?



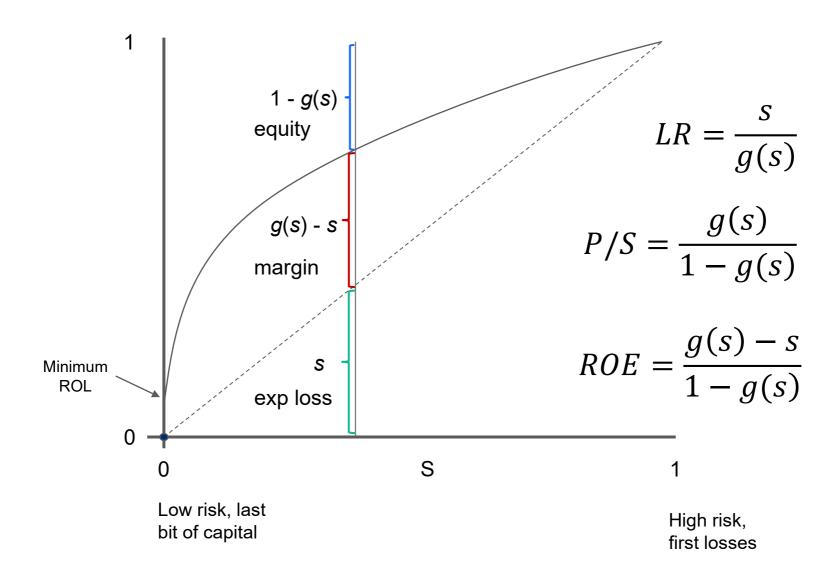
What do we know about a thin layer on the portfolio aggregate loss?



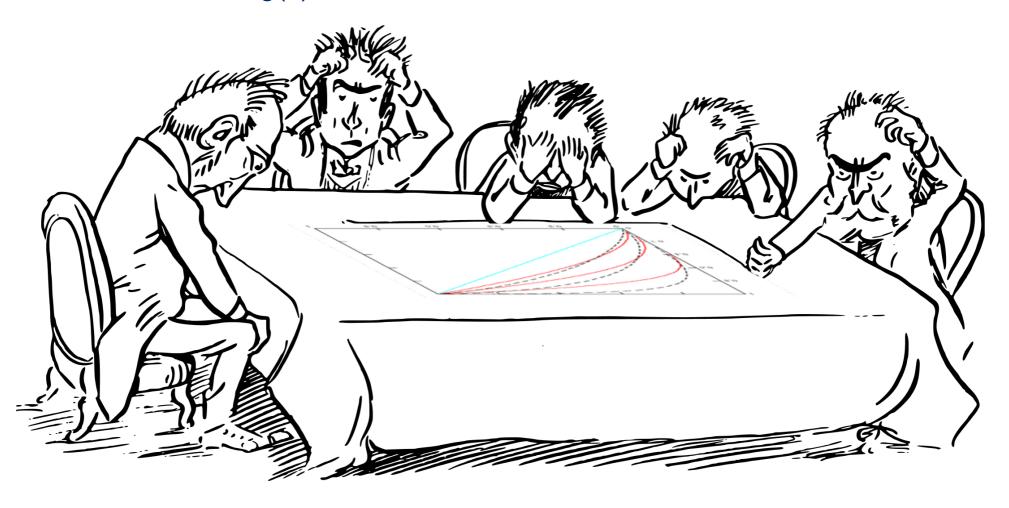
Assumption: there is a functional relationship between layer LOL and layer ROL



Distortion function gives you everything you want to know

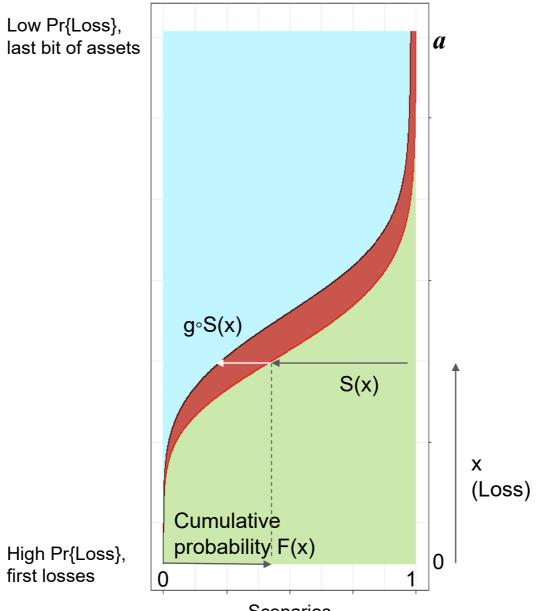


Where does that g(s) function come from?



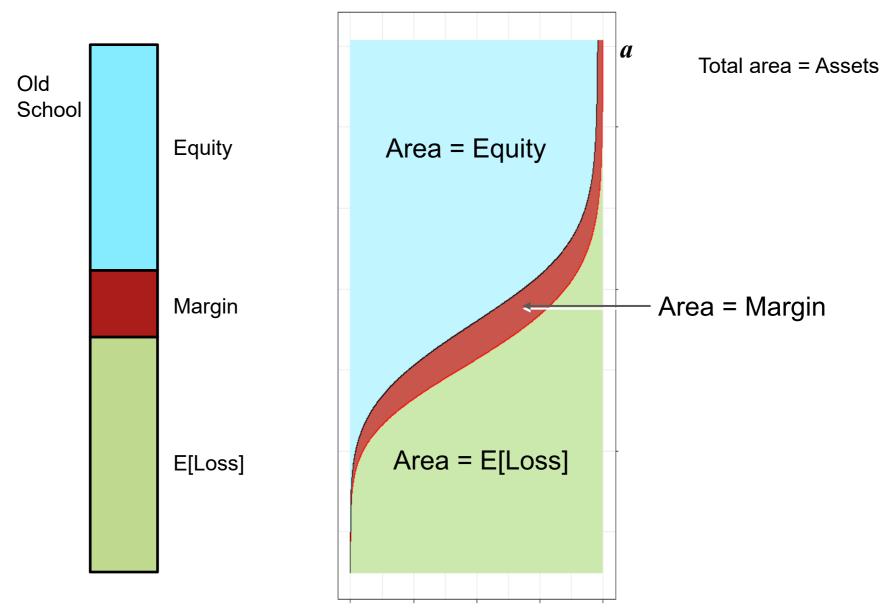
https://go.guycarp.com/cas2018

How it looks back in the scenario-loss domain

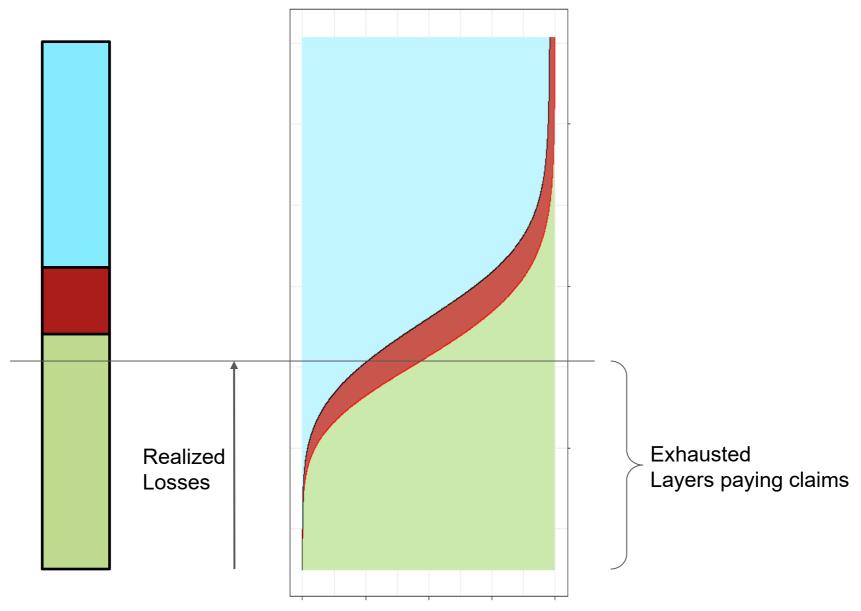


GUY CARPENTER Scenarios 20

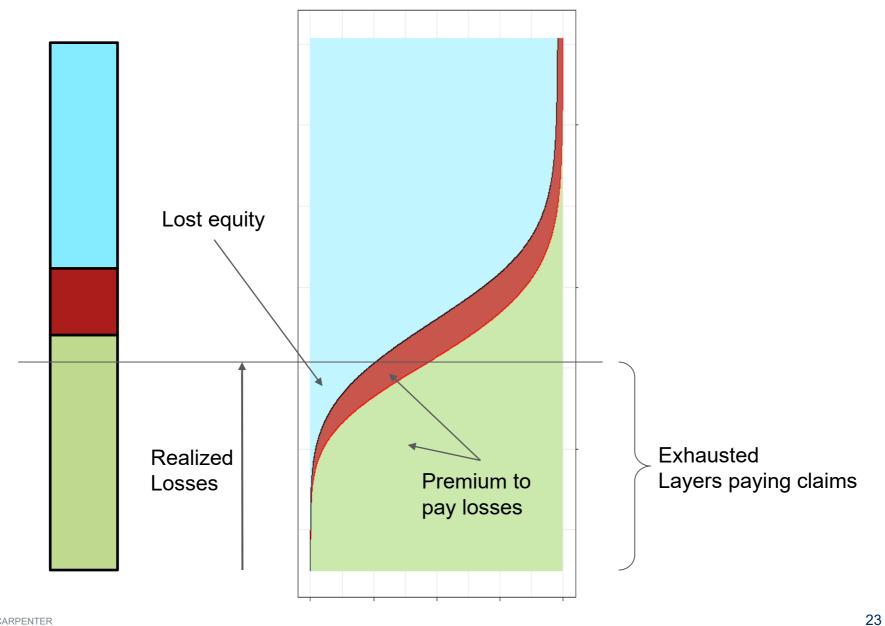
The new perspective on where premium and equity sit



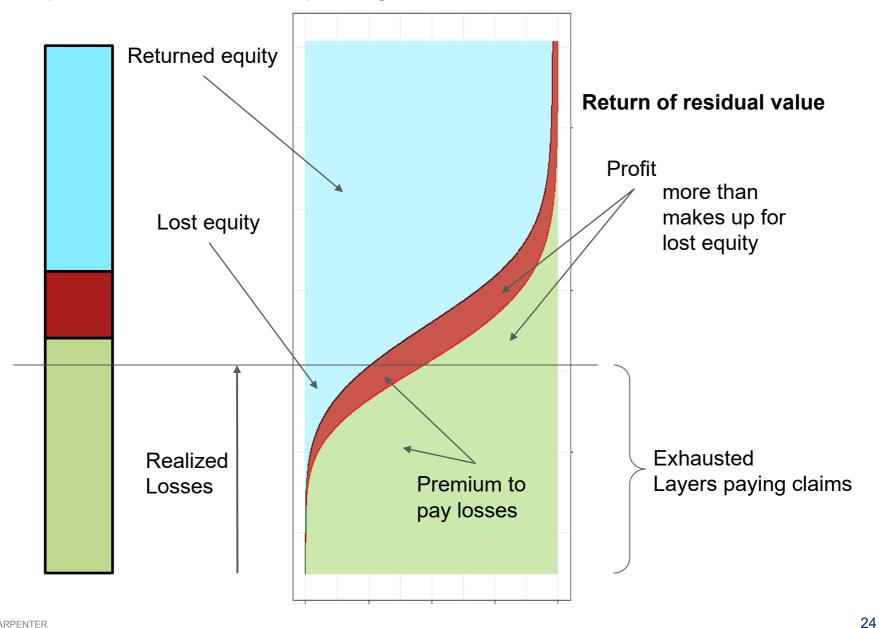
After operations financial reporting



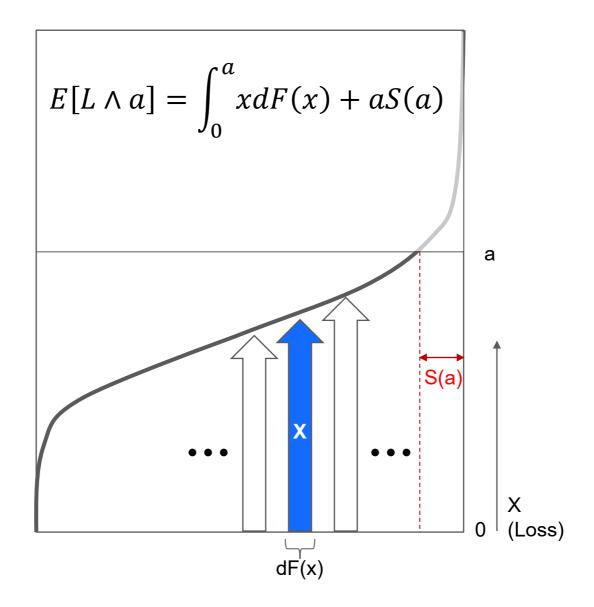
After operations financial reporting



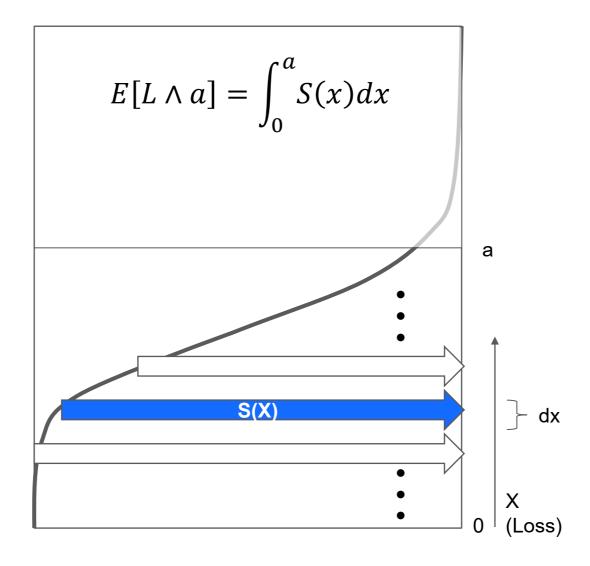
After operations financial reporting



Visualizing the expectation – conventional view



Visualizing the expectation – layer view



Probability distortion implies pricing

Expected loss
$$E[L \wedge a] = \int_0^a S(x)dx = \int_0^a xdF(x) + aS(a)$$

Probability distortion implies pricing

Expected loss (LEV)
$$E[L \wedge a] = \int_0^a S(x) dx = \int_0^a x dF(x) + aS(a)$$
 distorted probability transformed cdf
$$F(x) = \int_0^a S(x) dx = \int_0^a x dF(x) + aS(a)$$
 The probability transformed cdf
$$F(x) = \int_0^a S(x) dx = \int_0^a x dF(x) + aS(a)$$

$$F(x) = \int_0^a x dF(x) + aS(a)$$

$$F(x) = \int_0^a x dF(x) + aS(a)$$

$$F(x) = \int_0^a x dF(x) + aS(a)$$

Pause

- What you've seen so far:
 - Pricing curves do not violate finance theory
 - Thinking about layers of assets
 - Each consists of premium + equity
 - Margin is cost of capital
 - Expected loss s determines layer funding
 - Functional relationship g(s)

GUY CARPENTER

John.A.Major@guycarp.com

Charging for Diversifiable Risk and Proud to Do It: Multiline Insurance Pricing With a Distortion Risk Measure, Part 2

Stephen J. Mildenhall CAS Webinar Series, September 24, 2020

Section 1: Risk Margins by Line without Allocation

Loss payments: who gets what in default?

Sold insurance promises

$$X = X_1 + \dots + X_n$$

 Equal priority payment to line i with assets a

$$X_{i}(a) = \begin{cases} X_{i} & X \leq a \\ a & (X_{i}/X) & X > a \end{cases}$$
$$= X_{i} \frac{X \wedge a}{X}$$
$$= \frac{X_{i}}{X} X \wedge a$$

■ $\frac{X \wedge a}{X}$ = fixed payment pro rata factor applied to loss from all lines

 $\frac{X_i}{X} = \text{variable share of available}$ assets for line *i*

■ *X* ∧ *a* amount of assets **available** to pay claims

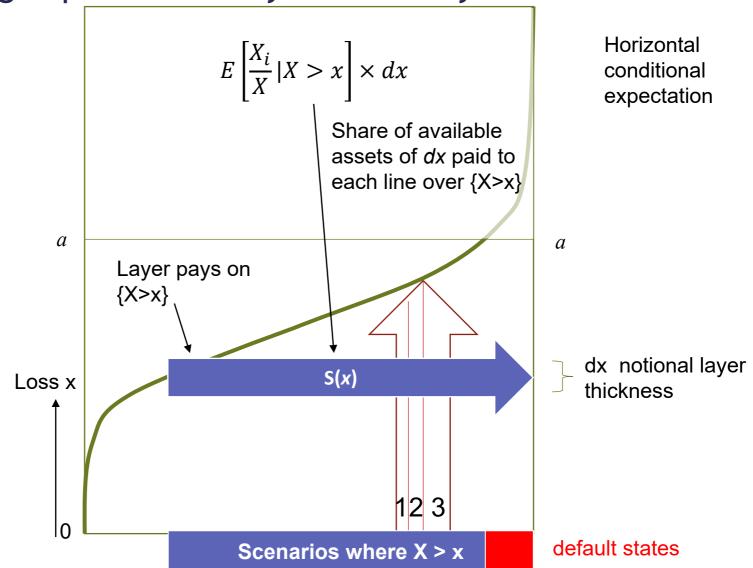
■ $X_i(a)$ sum to $X \wedge a$, limited losses

Expected loss formulas

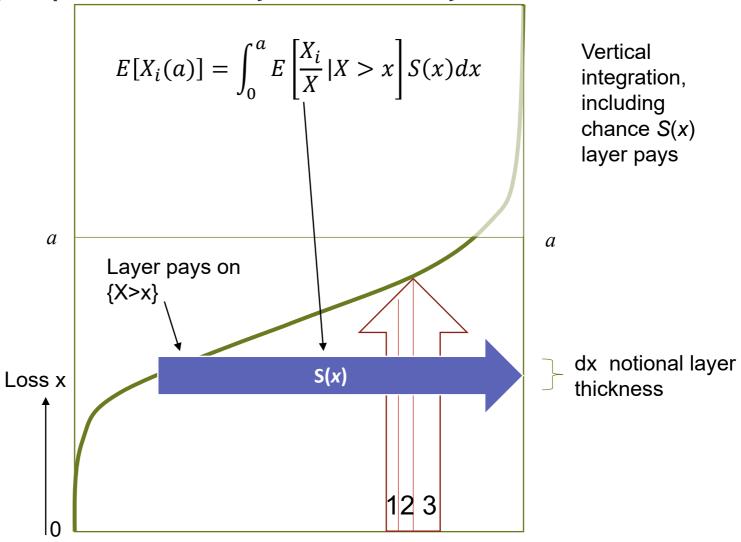
$$E[X \wedge a] = \int_0^a S(x) dx$$

$$E[X_i(a)] = ??$$

Visualizing expected loss by line and layer and total



Visualizing expected loss by line and layer and total



Expected loss and premium by line and layer and total

$$\overline{L}_{i}(a) = E[X_{i}(a)] = \int_{0}^{a} E\left[\frac{X_{i}}{X}|X > x\right] S(x) dx = \int_{0}^{a} \alpha_{i}(x) S(x) dx$$

$$\alpha_{i}(x)$$

$$\overline{P}_i(a) = E_g[X_i(a)] = \int_0^a E_g\left[\frac{X_i}{X}|X > x\right] g(S(x)) dx = \int_0^a \beta_i(x) g(S(x)) dx$$

$$\beta_i(x)$$

$$\alpha_i$$
, β_i functions add-up: $\sum \alpha_i(x) = E\left[\frac{X_1 + \dots + X_n}{X} | X > x\right] = 1$

Expected loss and premium by line and layer and total

Loss cost density
$$L_i(x) = \alpha_i(x)S(x)$$

Premium density
$$P_i(x) = \beta_i(x)g(S(x))$$

$$\Rightarrow$$
 Margin density $M_i(x) = P_i(x) - L_i(x)$ $= \beta_i(x)g(S(x)) - \alpha_i(x)S(x)$

- Integrate density to get total
- Everything you need to price!
- All quantities add-up
- Not an arbitrary allocation...no choices

Assumptions

- Price with g
- Equal priority in default

Independence of X_i not required

Three subtle points

- E_g is not additive, the risk adjustment depends on X and ρ
- Allocation of an allocation: is risk adjustment based on X or X ∧ a?
 - It can matter...it doesn't for SRMs
 - Comonotonic additive
- Non-uniqueness: is risk adjustment (conditional measure) unique?
 - No...but it doesn't matter for SRMs
 - Law invariant and comonotonic additive

Section 2: Frictional Costs and Allocation

Frictional costs of capital

Sidecar, ILS, Alternative Cat Capital: risk cost from SRM

Equity Capital: risk cost + frictional costs

- Frictional costs of capital: investors don't like committing permanent equity capital
 - Don't trust management: principal/agent problems
 - Double taxation
 - Regulatory restrictions
- Frictional costs = tax on capital → must allocate capital
- Insurers exist because they lower ambiguity costs (no cat models)

Law invariant assumption

A **law invariant** risk measure is function of the distribution of outcomes but does not distinguish by cause of loss

Therefore return can't vary by line within a layer

For a given layer, all LOBs must have the same ROE

$$r(x) = \frac{M(x)}{Q(x)} = r_i(x) = \frac{M_i(x)}{Q_i(x)}$$

Spectral risk measures are law invariant

Implied layer capital allocation by line

$$\frac{M(x)}{Q(x)} = \frac{M_i(x)}{Q_i(x)} \Rightarrow Q_i(x) = \frac{M_i(x)}{M(x)}Q(x)$$

$$Q_i(x) = \frac{\beta_i(x)g(S(x)) - \alpha_i(x)S(x)}{g(S(x)) - S(x)} \{1 - g(S(x))\}$$
Capital allocation Capital in layer

...unique layer capital allocation!

Risk margin and capital allocation can be negative!

■ Risk margin and allocation can be negative if $\beta_i(x)$ sufficiently less than $\alpha_i(x)$

$$\frac{\beta_i(x)g(S(x)) - \alpha_i(x)S(x)}{g(S(x)) - S(x)}$$

• When is $\beta_i(x) < \alpha_i(x)$? For relatively thin tailed lines!

■ Risk margin across all lines g(S(x)) - S(x) is always positive

 Allocated risk margin always positive for independent lines if capital standard sufficiently strong

Risk cost of capital varies by amount of assets

Total risk margin is a function of total assets

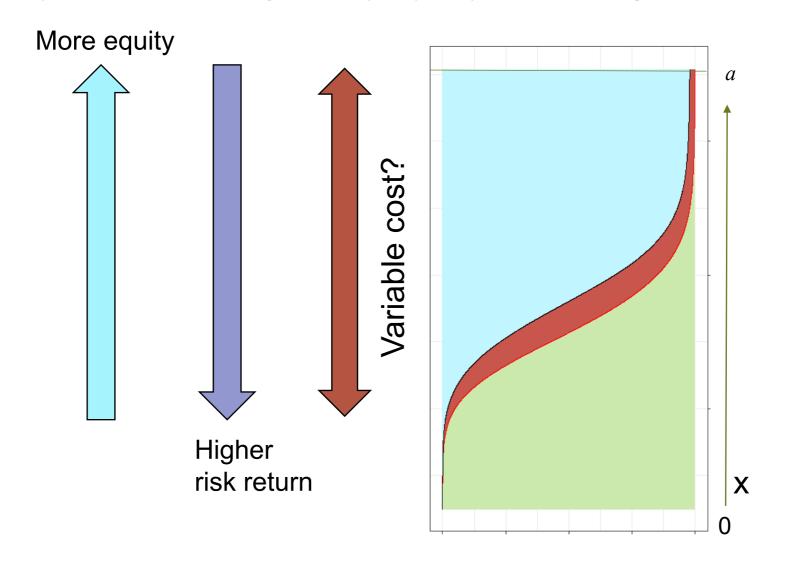
$$\overline{M}(a) = \int_0^a g(S(x)) - S(x) dx$$

Total capital also varies with assets

$$\bar{Q}(a) = \int_0^a 1 - g(S(x)) dx$$

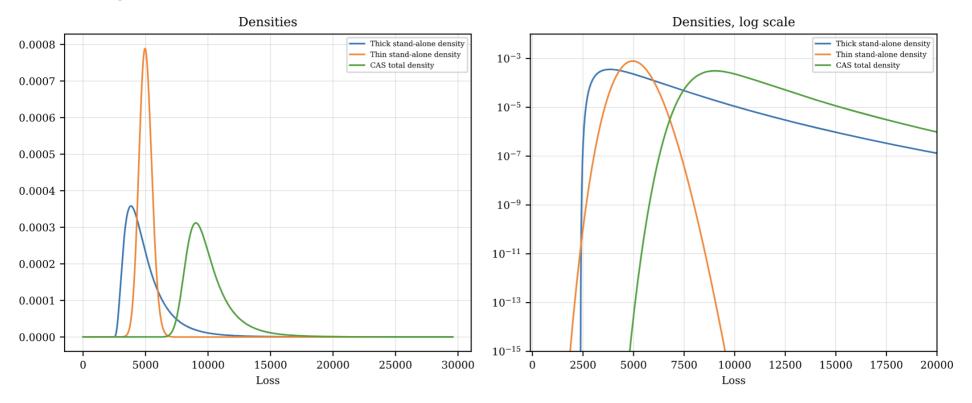
- Hence risk cost of capital (M/Q) varies with assets
- Total cost of capital adds frictional costs proportional to allocated capital

Equity and risk margin vary by layer in complex manner



Section 3: Thick- and Thin-Tailed Example

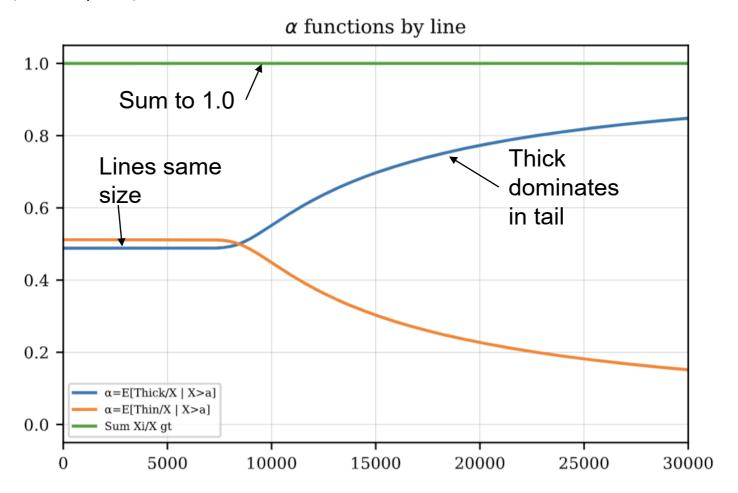
Example: Thick and Thin two-line model



- Lines independent, convenience only
- Lines same size, each has EL = 5000
- Line CVs are 36% and 10%, overall CV = 18.9%
- Pricing: Wang distortion to 10% ROE at 20,000 assets, LR = 91.7%

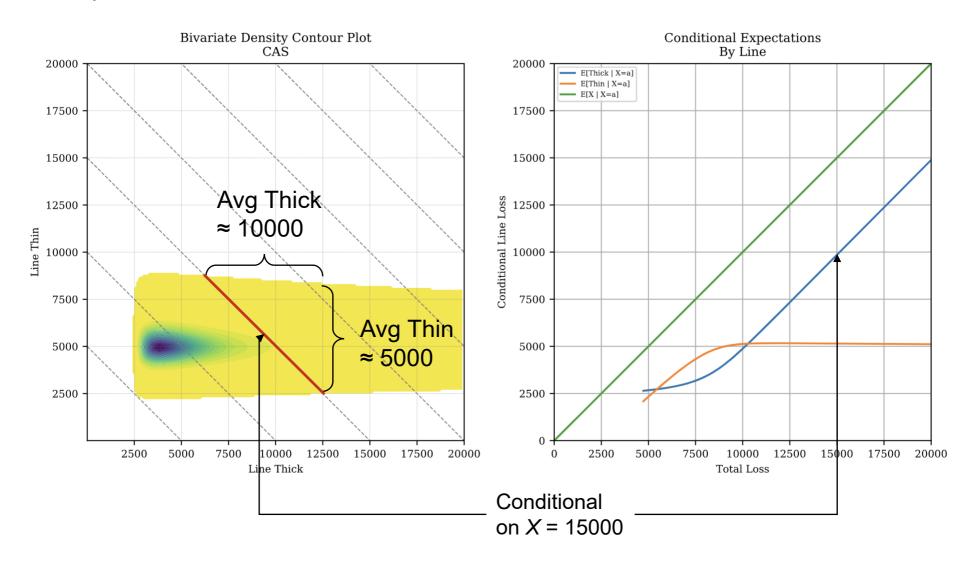
alpha function: calculates expected loss by line

• $\alpha_i(x) = E[X_i / X | X > x]$ as a function of x



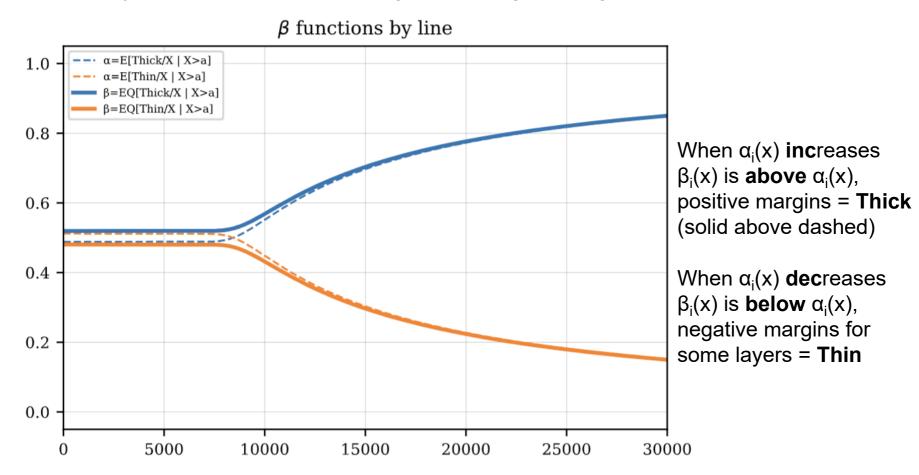
$$\alpha_i(x)S(x) = \int_x^\infty \frac{E[X_i | X = t]}{t} f_X(t)dt$$

$E[X_i \mid X=x]$: building block function for alpha and beta

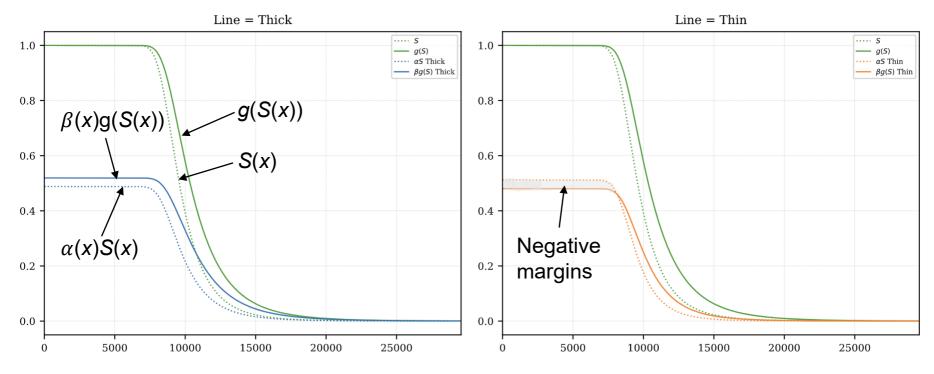


beta function: calculates premium by line

- $\beta_i(x) = \mathbb{E}_q[X_i/X \mid X > x]$ (solid line) calculates premium
- Risk adjusted version of α, putting more weight on right tail



Margins by asset layer, by line and tail behavior



Thick... $\alpha_i(x)$ increases... $\beta_i(x)$ above $\alpha_i(x)$

 $\beta_i(x)g(S(x))$ above $\alpha_i(x)S(x)$ since g(S)>S

Positive margins at all layers of capital

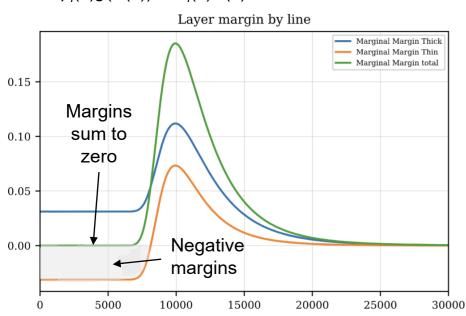
Thin... $\alpha_i(x)$ **dec**reases... $\beta_i(x)$ **below** $\alpha_i(x)$

 $\beta_i(x)g(S(x))$ may be **below** $\alpha_i(x)S(x)$

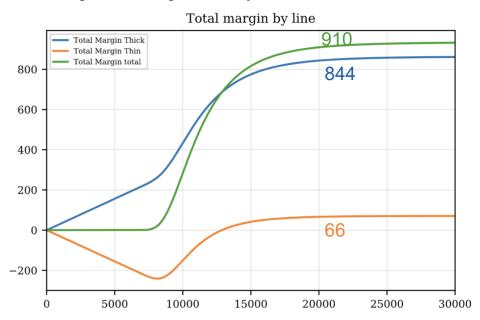
Possible negative margins for low layers, g(1) = 1, and lower overall margin

Margin by asset layer, by line

Layer Margin Density = Solid - Dashed $\beta_i(x)g(S(x)) - \alpha_i(x)S(x)$



Cumulative Margin Integral of margin density



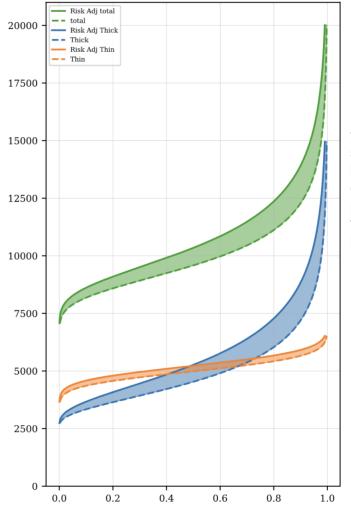
- Thick gains by pooling with thin in low layers
- Thick pays a positive margin to compensate thin for worse coverage
- Both lines benefit from better cover at high layers
- Both lines pay positive margin for incremental capital
- Above 13K both lines pay positive margin but thin line cost reduced by coverage impacts of pooling with Thick
- Thin 2.5% cost of capital and thick 13.1%; overall cost calibrated to 10.0% (see appendix for details)

Pricing summary: not the tail wagging the dog

- Thick line double whammy
 - Higher capital need
 - Consumes more high relative cost tail capital
- Pooling helps Thick, hurts Thin
- Margin driven by body, not default
- Total margins (shaded, right)

Combined	910	(right)
----------------------------	-----	---------

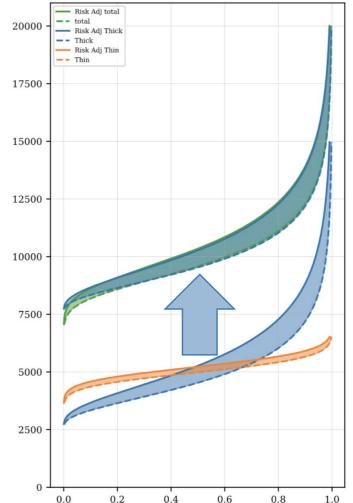
- Thick within total 844 (prev. sld.)
- Thin within total66 (prev. sld.)
- Thick stand-alone 872 (right)
- Thin stand-alone 239 (right)



y axis shows losses to consistent probability threshold by line

Pricing summary: not the tail wagging the dog

- Thick line double whammy
 - Higher capital need
 - Consumes more high relative cost tail capital
- Pooling helps Thick, hurts Thin
- Margin driven by body, not default
- Adding Thin line hardly changes shape or area of Thick line margin!
- Thick blue, translated up by 5000, expected loss for Thin, is almost the same total, green
- Adding thin ≈ adding constant loss



y axis shows losses to consistent probability threshold by line

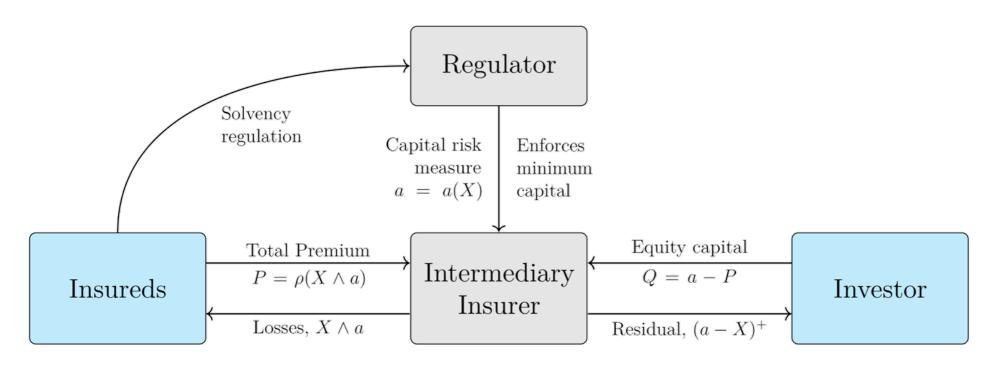
Where to find thin-tailed business?

Reserves!

Section 4: Market Structure Implications

Why is Florida homeowners written in monoline companies?

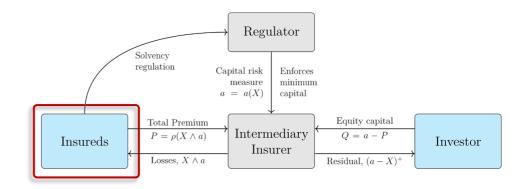
Four actors and their interactions



 One-period model, no expenses, no investment income, no taxes; risk transfer and not risk pooling = no frictional costs

Insured loss distributions

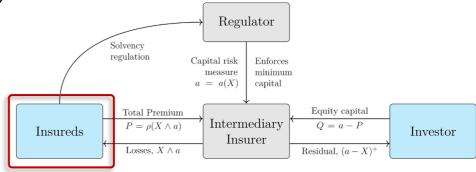
- Two classes (lines) of insured
 - X₀ Low-risk class: high frequency, low severity; Illinois auto
 - X₁ High-risk class: catastrophe exposed; Florida home



- Risk is a characteristic of class and not the individual insured
- Homogeneous loss model: distribution scales, no shape change
 - Results for a sub-pool of a class are proportional to the results for whole class, model loss ratio

Insured buying behavior

- Face mandatory / quasi-mandatory insurance requirement
 - 60% of premium (Aon Benfield, 2015)

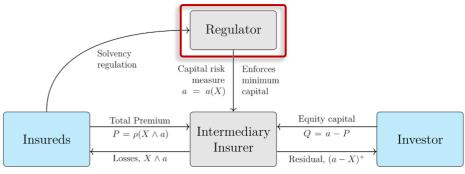


- Mandate is for third-party protection
 - Insureds do not care about insurer solvency, provided policy satisfies mandatory requirement

Insureds are pure price buyers

Regulator

 Solvency regulation necessary to ensure effectiveness of mandatory insurance

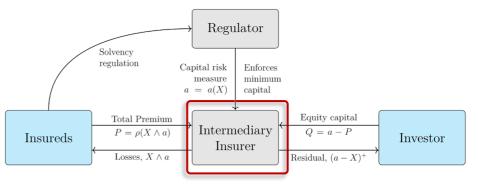


Incorporeal: regulator is a formula

- Regulatory capital standard risk functional a = a(X) = a(total risk)
 - Value at Risk (VaR) or tail value at risk
- No other regulation beyond capital standard

Intermediary insurer or pool

"Smart contract" incorporeal insurer or risk pool like a cat bond

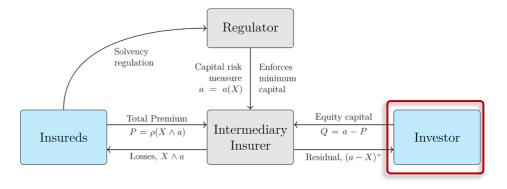


Incorporeal: insurer is a formula

- No frictional cost for investor to hold assets in insurer
 - No transaction costs, no taxes
 - No management: no principle-agent problems
 - Minimal regulation, no trapped capital

Investor: ultimate risk bearer

Ambiguity averse but not necessarily risk averse



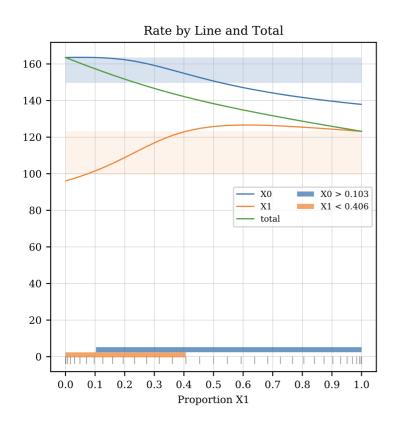
- Investors price using a distortion risk measure ρ, which prices any distribution
 X as ρ(X)
 - Use a spectral risk measure for ρ

How will risks pool?

- Monoline pools on the same class can merge by homogeneity
- There are only three possible market structures
 - Full pooling: one insurer
 - Two monoline insurers
 - One multiline pool insurer and one monoline insurer
- Market defined by proportion t of risk class 1 in the pool, $0 \le t \le 1$, and

t = 0, 1	two monoline pools
t = 0.5	full pooling
0 < <i>t</i> < 0.5	class 0 fully pooled, class 1 split between pool and monoline
0.5 < <i>t</i> < 1	class 1 fully pooled, class 0 split between pool and monoline

Example



Assumptions

- Losses gamma distribution with CV 0.1 and 0.25
- Proportional hazard rho with 0.3 parameter
- Capital standard: 95% value at risk

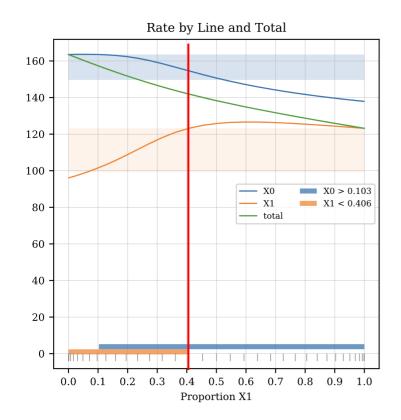
- t, the proportion of X₁, on x-axis
- Lines show rate for each line
 - Blue X₀ low, orange X₁ high risk
 - Green: blended pool rate
- Expected unlimited loss, before insurer default

$$-X_0 = 150$$

$$-X_1 = 100$$

- Shaded bands at top show range from monoline loss cost and premium for each line
- Expensive pricing, weak capital standard

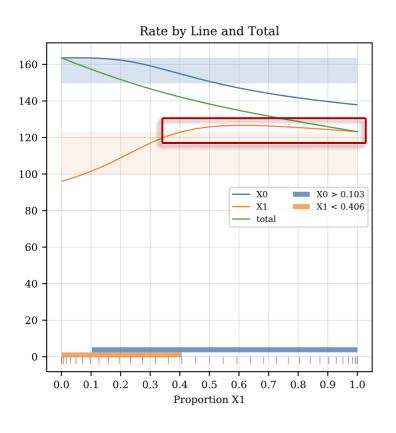
Example: partial pooling equilibrium solution



Hence Florida homeowners not fully pooled

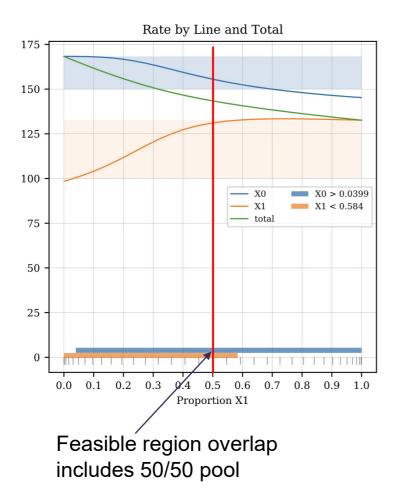
- Equilibrium solution
 - X₀ and 2/3rds of X₁ are pooled; remaining 1/3rd of X₁ written monoline, t = 0.4
- Why?
 - -t > 0.4: X_1 rate greater than monoline... X_1 will not pool
 - t < 0.4: X₁ insureds in pool get below monoline rate, with remainder monoline
 - Remainder will offer to pool with X₀
 at slightly higher rate until equilibrium reached at t = 0.4
 - X₁ pays monoline rate and X₀
 captures all diversification benefit

Example: why orange rate line bows up



- Adding small amount of X₀ to X₁ advantages X₁
 - Small amount of X₀ like adding a constant liability (slide 25)
 - X₁ thicker tailed...more likely to "cause" insolvency
 - ...by equal priority it picks up a greater share of assets in default
- Bowing up does not occur with unlimited capital unless capital standard super-additive = green line bows up
- Two monoline pools with superadditive capital standard

Example: Full Pooling Outcome



- When t = 0.5 is feasible for both lines it is an equilibrium solution
- Why?
 - For $t \neq 0.5$ some insureds are forced into monoline rate
 - Monoline insureds offer to pool at more advantageous rate
 - Original pool unravels
- At t = 0.5 all insureds pay lower multiline rate, and no rational action can cause pool to unravel
- Difference: capital standard 99.5%
 Value at Risk

Section 5: Conclusions

Conclusions

- Premium combines fair value to customers of contractual cash flows and marginal frictional cost to insurer
- Risk cost of capital varies by layer, line, and amount of capital in a complex manner, but can be determined without allocation
- Capital allocation needed to incorporate frictional cost of capital
- Capital standards can lead to incomplete pooling, e.g., Florida HO
- Additional resources
 - Introductory videos: http://go.guycarp.com/cas2018
 - Paper with details: https://arxiv.org/abs/2008.12427
 - Forthcoming book *Pricing Insurance Risk* (Wiley) due Summer 2021

aggregate Software: https://aggregate.readthedocs.io/

Appendix

Audit statistics and pricing summary

	Thick	Thin	total
Mean	5000	5000	10000
cv	0.364418	0.101493	0.189144
Skew	2.40723	0.158277	2.1551
EmpSkew	2.4055	0.158277	2.15259
P99.0	11645	6240	16712
P99.5	13212	6384	18274
P99.99	24537	7067	29578
MeanErr	-4.73138e-07	-1.22125e-15	-4.88351e-07
CVErr	-2.41911e-05	2.28706e-14	-3.92099e-05

line	Thick	Thin	total
stat			
EPD	0.001107	0.00027622	0.00069138
Loss	4994.5	4998.6	9993.1
Loss Ratio	0.85552	0.98691	0.91656
Margin	843.44	66.28	909.72
Premium	5837.9	5064.9	10903
P/S Ratio	0.90642	1.9066	1.1985
Equity	6440.6	2656.6	9097.2
ROE	0.13096	0.02495	0.1

- Example produced using aggregate Python package https://github.com/mynl/aggregate
- pip install aggregate
- Aggregate portfolio specification:

- Pricing results calibrated to 10% return at 20000 assets, p=0.997, using a Wang transform
- P + Q = 10903 + 9097 = 20000
- P = (P L) / Q = (10903 9993) / 9097 = 0.1

port CAS

agg Thick 5000 loss 100 x 0 sev lognorm 10 cv 20 mixed sig 0.35 0.6 agg Thin 5000 loss 100 x 0 sev lognorm 10 cv 20 poisson

Contact Information

steve@convexrisk.com

Graphic note: County size scaled to AAL estimates for hurricane, earthquake and severe weather using Gastner & Newman algorithm